
FFRI,Inc.

1

Monthly Research

Building Secure Linux Application
With Privilege Separation

ＦＦＲＩ, Inc
http://www.ffri.jp

Ver 1.00.02

FFRI,Inc.

2

Background

• Privilege separation is a key technology to achieve “Principle of
least privilege”

• In secure programming:

– Privilege separated application limits an impact of a vulnerability

– Real world application

• tcpdump, vsftpd, OpenSSH, Google Chrome

FFRI,Inc.

3

Privilege Separation

• A design of secure application architecture

– Dividing execution units and minimizing privilege each process

– Attacker obtains only few privileges even if the exploit is
successful

• Merit of privilege separated server application

– Strong user isolation in multi-user service

– Limited intruder hostile action on internet services

• Merit of privilege separated client application

– Secure execution environments for untrusted remote script
like javascript

• e.g. Web browser needs a lot of privileges while running
untrusted remote script

FFRI,Inc.

4

Key Technology

• Process dividing

– Dividing a process into some processes

• Process sandboxing

– Granting least privilege to each process

• Inter-process communication(IPC)

– For inter-communication between divided processes

– In Linux: Pipe, POSIX Shared memory, Unix domain socket…

FFRI,Inc.

Process Dividing

• To separate between privilege required processing(like process
management) and sensitive processing

– Divided processes communicate using IPC

5

Worker process

Master Process

Communication with

pipes, shared memory, unix domain socket…

Process

Ambient authority:

the process may read, write, fork…

Sensitive processing

Privilege required processing

Privilege required processing

Sensitive processing

Process

Dividing

FFRI,Inc.

Example: OpenSSH
• OpenSSH daemon spawns privileged worker process per session

– Authentication processing and authenticated user processing
execute in the non-privilege process

6

Daemon Process

Pre-authenticate Process

(no-privilege)

User Owned sshd Process

(user privilege)

Privileged Monitor

Process

Unauthorized client

Privileged Monitor

Process

Authorized client

Sandboxed

processes

Worker

processes

The master

process
Spawn

each connection

Spawn with

specific processing

FFRI,Inc.

Sandboxing on Linux

• Access Control based sandboxing

– Using Discretionary Access Control(DAC)

• UID, Permissions

– Using Mandatory Accesss Control(MAC)

• SELinux, AppArmor

– Using Namespace

• Chroot

• Capability based sandboxing

– Linux kernel capabilities（based on POSIX Capability)

– Linux secure computing mode

• State-of-the-art of sandboxing on Linux

7

FFRI,Inc.

Linux Secure Computing Mode(seccomp)

• Secure computing mode process renounces execution privileges
of system calls

– Developer has to concern themselves about “least privilege”
design

• Seccomp Mode 1 (Available since Linux 2.6.12~)

– Mode 1 permits only read(), write(), exit(), sigreturn()

• Seccomp Mode 2 (Available since Linux 3.5~)

– Mode 2 can configures permit/denied system calls

8

FFRI,Inc.

9

Seccomp Mode 2(a.k.a. Seccomp-bpf)

• Seccomp Mode 2 filtered out violated system calls at system
call execution

– Kernel calls bpf(Berkeley packet filter) backend with
translated bpf filter program

– Seccomp Mode 2 configuration forces developer to describe
bpf-program

__NR_read

Bpf
Bpf program

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, arch_nr),

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ARCH_NR, 1, 0)

BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

…

BPF_DATA
struct seccomp_data sd {

.nr = 0x63; // __NR_Read

.arch = 0x40000003; //i386

…

}

Kernel space

User space
read()

Return error

if filtered out by bpf

Execute allowed system

call only

FFRI,Inc.

10

Case study

• tcpdump

– Reducing own privilege

• the process not divided

• vsftpd

– Restricted accounts in multi-user services

• Google Chrome

– Running script engine with untrusted code

FFRI,Inc.

tcpdump

• tcpdump dropped own privileges before actual packet filtering

• Sandboxing is achieved due to change own user from
privileged to non-privileged user

11

./tcpdump

Capturing & filtering

(sandboxed)

Chroot()

Initializing

FFRI,Inc.

vsftpd

• Remote user restricted action with own privilege

– If user needs privilege action, child process calls privileged
process's function

– Reinforcing sandbox with Seccomp Mode 2 since version
3.0.0

12

Vsftpd Daemon

Child process

(unprivileged)

Dropping almost capabilities

and restricting system calls

Fork()

per session

Requesting privileged

operations

- Login

- Chown()

- New socket

FFRI,Inc.

Google Chrome

13

Browser Process

Renderer Process

(sandboxed)

GPU Process

(sandboxed)

Renderer Process

(sandboxed)

• Renderer separates main process and its sandboxing

– Because renderer executes untrusted remote script

IPC

FFRI,Inc.

Suitable a part of program
for privilege separation

• Parser with untrusted data

– e.g. Packet filtering

• Interpreter with untrusted code

– e.g. javascript engine

• Authentication processing on multi-user service

14

FFRI,Inc.

Concerns

• Increase complexity of source code by process dividing

• Decrease portability by sandboxing

– A number of privilege separation related component
depends on OS environment

• Process management, DAC/MAC, capabilities, IPCs..

• Deteriorate memory space effectiveness

– Divided processes consume memory larger than a
single process application

15

FFRI,Inc.

Conclusion

• Privilege separation limits incursion into your application

• Show key technology of privilege separation as follows:

– Process dividing

– Process sandboxing

– Inter-process communications

• Seccomp Mode 2 is state-of-the-art of Linux sandboxing

• Some security-critical open source software has been armed
process diving and sandboxing

• Privilege separation increases security, but a development cost
increase again

16

FFRI,Inc.

References

• Syscall Filters
https://fedoraproject.org/wiki/Features/Syscall_Filters

• The Chromium Projects: Design documents
http://dev.chromium.org/developers/design-documents/

• Using simple seccomp filters
http://outflux.net/teach-seccomp/

• Vsftpd
https://security.appspot.com/vsftpd.html

• OpenSSH
http://www.openssh.com/

• Preventing Privilege Escalation[Niels Provos et al, USENIX Security 2003]
http://niels.xtdnet.nl/papers/privsep.pdf

• Capsicum[Robert R.M.W et al, USENIX Security 2010]
http://static.usenix.org/event/sec10/tech/full_papers/Watson.pdf

17

https://fedoraproject.org/wiki/Features/Syscall_Filters
http://dev.chromium.org/developers/design-documents/
http://outflux.net/teach-seccomp/
https://security.appspot.com/vsftpd.html
http://www.openssh.com/
http://niels.xtdnet.nl/papers/privsep.pdf
http://static.usenix.org/event/sec10/tech/full_papers/Watson.pdf

FFRI,Inc.

Contact Information

E-Mail : research—feedback@ffri.jp

Twitter: @FFRI_Research

18

mailto:research—feedback@ffri.jp
https://twitter.com/FFRI_Research

