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Background

• Privilege separation is a key technology to achieve “Principle of 
least privilege”

• In secure programming:

– Privilege separated application limits an impact of a vulnerability 

– Real world application

• tcpdump, vsftpd, OpenSSH, Google Chrome
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Privilege Separation

• A design of secure application architecture

– Dividing execution units and minimizing privilege each process

– Attacker obtains only few privileges even if the exploit is 
successful

• Merit of privilege separated server application

– Strong user isolation in multi-user service

– Limited intruder hostile action on internet services

• Merit of privilege separated client application

– Secure execution environments for untrusted remote script 
like javascript 

• e.g. Web browser needs a lot of privileges while running 
untrusted remote script
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Key Technology 

• Process dividing

– Dividing a process into some processes

• Process sandboxing

– Granting least privilege to each process

• Inter-process communication(IPC)

– For inter-communication between divided processes 

– In Linux: Pipe, POSIX Shared memory, Unix domain socket…
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Process Dividing

• To separate between privilege required processing(like process 
management) and sensitive processing  

– Divided processes communicate using IPC
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Example: OpenSSH
• OpenSSH daemon spawns privileged worker process per session

– Authentication processing and authenticated user processing 
execute in the non-privilege process
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Sandboxing on Linux

• Access Control based sandboxing

– Using Discretionary Access Control(DAC)

• UID, Permissions

– Using Mandatory Accesss Control(MAC)

• SELinux, AppArmor

– Using Namespace

• Chroot

• Capability based sandboxing

– Linux kernel capabilities（based on POSIX Capability)

– Linux secure computing mode

• State-of-the-art of sandboxing on Linux
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Linux Secure Computing Mode(seccomp)

• Secure computing mode process renounces execution privileges 
of system calls

– Developer has to concern themselves about “least privilege” 
design

• Seccomp Mode 1 (Available since Linux 2.6.12~)

– Mode 1 permits only read(), write(), exit(), sigreturn()

• Seccomp Mode 2 (Available since Linux 3.5~)

– Mode 2 can configures permit/denied system calls
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Seccomp Mode 2(a.k.a. Seccomp-bpf)

• Seccomp Mode 2 filtered out violated system calls at system 
call execution

– Kernel calls bpf(Berkeley packet filter) backend with 
translated bpf filter program

– Seccomp Mode 2 configuration forces developer to describe 
bpf-program 

__NR_read

Bpf 
Bpf program

BPF_STMT(BPF_LD+BPF_W+BPF_ABS, arch_nr),

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ARCH_NR, 1, 0)

BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

…

BPF_DATA
struct seccomp_data sd {

.nr = 0x63; // __NR_Read

.arch = 0x40000003; //i386

…

}

Kernel space

User space
read()

Return error 

if filtered out by bpf

Execute allowed system 

call only
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Case study

• tcpdump

– Reducing own privilege

• the process not divided

• vsftpd

– Restricted accounts in multi-user services

• Google Chrome

– Running script engine with untrusted code
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tcpdump

• tcpdump dropped own privileges before actual packet filtering

• Sandboxing is achieved due to change own user from 
privileged to non-privileged user
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vsftpd

• Remote user restricted action with own privilege

– If user needs privilege action, child process calls privileged 
process's function

– Reinforcing sandbox with Seccomp Mode 2 since version 
3.0.0
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Google Chrome
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Browser Process

Renderer Process

(sandboxed)

GPU Process

(sandboxed)

Renderer Process
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• Renderer separates main process and its sandboxing

– Because renderer executes untrusted remote script

IPC
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Suitable a part of program 
for privilege separation

• Parser with untrusted data

– e.g. Packet filtering

• Interpreter with untrusted code

– e.g. javascript engine

• Authentication processing on multi-user service
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Concerns

• Increase complexity of source code by process dividing

• Decrease portability by sandboxing

– A number of privilege separation related component 
depends on OS environment

• Process management, DAC/MAC, capabilities, IPCs..  

• Deteriorate memory space effectiveness

– Divided processes consume memory larger than a 
single process application
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Conclusion

• Privilege separation limits incursion into your application

• Show key technology of privilege separation as follows:

– Process dividing 

– Process sandboxing

– Inter-process communications

• Seccomp Mode 2 is state-of-the-art of Linux sandboxing

• Some security-critical open source software has been armed 
process diving and sandboxing

• Privilege separation increases security, but a development cost 
increase again
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